Leszek Chybowski

Diagnozowanie silników okrętowych z zapłonem samoczynnym
w oparciu o analizę procesów wtrysku i spalania paliwa
Diagnozowanie silników okrętowych z zapłonem samoczynnym w oparciu o analizę procesów wtrysku i spalania paliwa

Szczecin 2019
Leszek Chybowski
Diagnozowanie silników okrętowych z zapłonem samoczynnym w oparciu o analizę procesów wtrysku i spalania paliwa

Autor jest pracownikiem Wydziału Mechanicznego Akademii Morskiej w Szczecinie

Recenzenci:
prof. dr hab. inż. Adam Charchalis
prof. dr hab. inż. Andrzej Piętak

Redaktor naukowy:
prof. dr hab. inż. Bernard Wiśniewski

© Copyright by Leszek Chybowski & Akademia Morska w Szczecinie 2019

W niniejszej pracy przedstawiono rezultaty realizacji tematu badań statutowych 1/S/ITESO/17 „Podwyższanie efektywności eksploatacji złożonych systemów technicznych w oparciu o metody systematycznego tworzenia i wdrażania innowacji z wykorzystaniem nowoczesnych materiałów i modyfikacji struktury obiektów”, prowadzonego w Instytucie Eksploatacji Siłowni Okrętowych na Wydziale Mechanicznym Akademii Morskiej w Szczecinie.

Na okładce wykorzystano faksymile wykresu indykatorowego wykonanego przez Nikolausa Augusta Otto dn. 9 maja 1876 r. (Werkfoto Deutz)

Opracowanie wydawnicze: Paulina Mańkowska
Projekt okładki: Tomasz Kwiatkowski
Skład komputerowy: Irena Hajdasz

Wydawnictwo Naukowe Akademii Morskiej w Szczecinie
70-506 Szczecin, ul. T. Starzyńskiego 8, www.wydawnictwo.am.szczecin.pl
Druk: Volumina.pl Daniel Krzanowski, 71-063 Szczecin, ul. Ks. Witolda 7–9
SPIS TREŚCI

Wykaz ważniejszych symboli i oznaczeń ... 5
Od Autora ... 7
1. Wprowadzenie ... 11
2. Indykowanie silnika jako narzędzie diagnostyczne .. 14
 2.1. Przebieg procesu spalania paliwa ... 14
 2.2. Przebieg procesu wtrysku paliwa ... 16
 2.3. Zmiana ciśnienia w komorze spalania ... 17
3. Parametry diagnostyczne w warunkach standardowych 19
4. Diagnozowanie zakłóceń w pracy silnika .. 26
 4.1. Nieprawidłowo wyregulowana dawka paliwa ... 29
 4.2. Nieprawidłowo wyregulowany początek wtrysku paliwa 37
 4.3. Nieprawidłowe rozpylenie paliwa ... 53
 4.4. Przecieki w instalacji wtryskowej ... 69
 4.5. Zużycie lub uszkodzenie elementów komory spalania 80
Podsumowanie .. 99
Bibliografia .. 101
 Załączniki ... 107
 Wykaz rysunków ... 116
 Wykaz tabel ... 120
 Streszczenie .. 121
 Abstract ... 122
WYKAZ WAŻNIEJSZYCH SYMBOLI I OZNACZEŃ

1. **OWK** – stopień kątowy obrotu wału korbowego,
2. **BSFC [g/kWh]** – jednostkowe zużycie paliwa,
3. **CA [deg]** – położenie kątowe wału korbowego względem GMP tłoka w danym cylindrze,
4. **CORR** – indeks dolny parametrów skorygowanych do warunków standardowych ISO,
5. **CORR1** – indeks dolny poprawki do korekcji parametru ze względu na temperaturę powietrza na dopływie do turbodoładowarki,
6. **CORR2** – indeks dolny poprawki do korekcji parametru ze względu na temperaturę wody chłodzącej na dopływie do chłodnicy doładowującej,
7. **D [m]** – średnica pola kręgu śruby napędowej,
8. **DMP** – dolne martwe położenie (wewnętrzne zwrotne położenie) tłoka,
9. **EXH.P [bar]** – ciśnienie w kolektorze wylotowym spalin,
10. **FQS** – system korekty kąta wyprzedzenia wtrysku ze względu na zdolności zapłonowe paliwa (ang. *Fuel Quality Setting*),
11. **GMP** – górne martwe położenie (zewnętrzne zwrotne położenie) tłoka,
12. **H [m]** – skok śruby napędowej,
13. **KW** – koniec wtrysku paliwa (zamknięcie wtryskiwacza),
14. **IKW [kW]** – moc indykowana z cylindra,
15. **INDEX [%]** – wskaźnik obciążenia (procentowa nastawa dawki paliwa na pompie wtryskowej),
16. **LINJ [deg]** – kąt wtrysku,
17. **MEAS** – indeks dolny parametrów odczytanych z instrumentów pomiarowych,
18. **MIP [bar]** – średnie ciśnienie indykowane,
19. **n [obr/min]** – prędkość obrotowa silnika (oznaczenie ogólne),
20. **n_{T/C} [obr/min]** – prędkość obrotowa turbosprężarki,
21. **p [bar]** – ciśnienie (oznaczenie ogólne),
22. **p_{wtr} [bar]** – ciśnienie wtrysku paliwa (oznaczenie ogólne),

1 W celu ujednolicenia sposobu oznaczania parametry diagnostyczne zamodelowane w symulatorze siłowni okrętowej zostały w niniejszym opracowaniu opisane zgodnie z notacją użytą przez producenta symulatora.
$p_{\text{CHINL}} \text{[bar]}$ — ciśnienie powietrza na dopływie do chłodnicy powietrza doładowującego,

$p_{\text{CHOUT}} \text{[bar]}$ — ciśnienie powietrza na odpływie z chłodnicy powietrza doładowującego,

$\text{PCOMPR} \text{[bar]}$ — (maksymalne) ciśnienie sprężania,

$\text{PEXP} \text{[bar]}$ — ciśnienie rozprężania mierzone przy położeniu tłoka 36° za GMP,

$\text{PINJM} \text{[bar]}$ — ciśnienie maksymalne wtrysku paliwa,

$\text{PINJO} \text{[bar]}$ — ciśnienie początku wtrysku paliwa (początku otwarcia wtryskiwacza),

$\text{P MAX} \text{[bar]}$ — maksymalne ciśnienie spalania,

PT — efektywny początek tłoczenia pompy wtryskowej paliwa,

PW — początek wtrysku paliwa (początek otwarcia wtryskiwacza),

PZ — początek zapłonu (rozpoczęcie spalania w cylindrze),

$\text{RISE}_1 \text{[bar/deg]}$ — wskaźnik oceny szczelności pary precyzyjnej pompy wtryskowej,

$\text{SCAV.P} \text{[bar]}$ — ciśnienie doładowania (w zasobniku powietrza przepłukującego),

SI — początek fazy spalania izobarycznego,

$\text{SPEED} \text{[obr/min]}$ — prędkość obrotowa,

Super-VIT — system automatycznej zmiany kąta wyprzedzenia wtrysku paliwa (ang. Variable Injection Timing),

$t_{\text{COOLINL}} \text{[°C]}$ — temperatura wody na dopływie do chłodnicy powietrza doładowującego,

$t_{\text{COOLOUT}} \text{[°C]}$ — temperatura wody na odpływie z chłodnicy powietrza doładowującego,

$\text{TIGN} \text{[deg]}$ — kąt wyprzedzenia zapłonu,

$\text{TINJO} \text{[deg]}$ — kąt wyprzedzenia wtrysku paliwa,

$t_{\text{INL}} \text{[°C]}$ — temperatura powietrza na dopływie do turbodoładowarki,

$\text{TMAX} \text{[deg]}$ — kąt maksymalnego ciśnienia spalania,

$t_{\text{CHINL}} \text{[°C]}$ — temperatura powietrza na dopływie do chłodnicy powietrza doładowującego,

$t_{\text{CHOUT}} \text{[°C]}$ — temperatura powietrza na odpływie z chłodnicy powietrza doładowującego,

$t_{\text{SP}} \text{[°C]}$ — temperatura spalin wylotowych na wylocie z cylindra,

$\alpha_{\text{ZW}} \text{[deg]}$ — kąt rzeczywistej zwłoki wtrysku,

$\alpha_{\text{ZZ}} \text{[deg]}$ — kąt zwłoki zapłonu,

$\Delta P_{\text{pow}} \text{[bar]}$ — spadek ciśnienia na filtrze powietrza turbosprężarki,

$\tau_{\text{ZW}} \text{[s]}$ — czas trwania rzeczywistej zwłoki wtrysku,

$\tau_{\text{ZZ}} \text{[s]}$ — czas trwania zwłoki zapłonu,

VIT-INDEX [%] lub [mm] — nastawa siłownika systemu zmiany kąta wyprzedzenia wtrysku paliwa.
Spalinowy silnik tłokowy jest dziś najbardziej rozwiniętą pod względem technologicznym maszyną cieplną, która osiąga sprawność ogólną przekraczającą 50%. Wysoka ekonomiczność i rozpowszechnienie paliw ropopochodnych czynią spalinowe silniki tłokowe podstawowym źródłem napędu pojazdów samochodowych, maszyn drogowych, budowlanych i rolniczych. Pomimo intensywnych działań człowieka, mających na celu zwiększenie wykorzystania odnawialnych źródeł energii oraz napędów elektrycznych, silniki spalinowe będą jeszcze przez długi czas wykorzystywane do napędu środków transportu, a zmniejszenie negatywnego oddziaływania na środowisko jest realizowane poprzez poprawę ekonomiczności oraz modyfikację składu spalin.

Najwyższą doskonałość jednak osiągnęły silniki okrętowe. Szacuje się, iż silniki spalinowe stanowią napęd 90–92% obecnie eksploatowanych statków [70]. Moc znamionowa największych wolnoobrotowych dwusuwowych silników przekracza 80 MW. Wysoką sprawność i moc uzyskuje się poprzez zastosowanie silników o bardzo długim skoku tłoka, co z kolei wiąże się z dużymi gabarytami. Przykładowo, 14-cylindrowy silnik 14RT-Flex96C firmy Wärtsilä ma 13,5 m wysokości, 27,3 m długości, waży ponad 2300 ton i rozwija moc 81,3 MW.

Współcześnie spalinowe silniki okrętowe napędu głównego muszą więc:

- zapewniać bezpieczeństwo eksploatacji statku dzięki wyposażeniu w układy zabezpieczające przed uszkodzeniem silnika (alarmy, awaryjne zmniejszenie obciążenia slow down, awaryjne zatrzymanie silnika shut down), układy minimalizujące skutki awarii (klapy przeciwwybuchowe, systemy gaszenia pożarów, bezzpieczniki membranowe, zawory bezpieczeństwa), a także dające możliwość eksploatacji w warunkach awaryjnych (praca z wyłączonym układem cylindrowym, praca z uszkodzoną turbiną) [26, 57];
- spełniać normatywne wymagania w zakresie zanieczyszczenia środowiska [25], w szczególności dotyczące składu emitowanych spalin, poprzez modyfikację konstrukcji elementów silnika, sposobu sterowania silnikiem oraz zastosowanie dodatkowych środków technicznych (recyrkulacja gazów wytwarzanych, wtrysk wody do komory spalania, oczyszczanie spalin w układach selektywnej redukcji katalitycznej);
• być ekonomiczne, czyli wykazywać odpowiednio niskie jednostkowe zużycie paliwa (poniżej 170 g/kWh), przy jednoczesnej możliwości spalania paliw najgorszych gatunków, a więc najtańszych (lepkość kinematyczna w temperaturze 50°C dla wykorzystywanych paliw może przekraczać 700 mm²/s);
• wykazywać wysoką niezawodność, trwałość i gotowość (okresy między- naprawcze elementów konstrukcyjnych silników osiągają kilka do kilku-dziesięciu tysięcy godzin, zaś jednocześnie czas przeprowadzenia głównych obsług, jak np. wymiana tłoka, skrócił się do kilku / kilkunastu godzin).

Do ewolucji współczesnych konstrukcji okrętowych spalinowych silników tłokowych (OSST) przyczyniły się wymagania stawiane układom napędowym statków przez armatorów, instytucje klasyfikacyjne oraz regulacje prawne ograniczające zanieczyszczenie środowiska naturalnego przez silniki spalinowe.

Społeczeństwo wymagało konstrukcji silników, które spełniały wymogi: wytrzymałość, trwałość, niewątpliwa, niezawodność, a także niskie zużycie paliwa, jak również zgodność z regulacjami prawnymi dotyczącymi ochrony środowiska. Wzmacnianie wymagań do silników silnikowych spalinowych stymulowało ich rozwój i ewolucję, wprowadzając nowoczesne materiały i technologie, co pozwalało na spełnienie wymogów jednostkowego zużycia paliwa (poniżej 170 g/kWh), przy jednoczesnej możliwości spalania paliw najgorszych gatunków, a więc najtańszych (lepkość kinematyczna w temperaturze 50°C dla wykorzystywanych paliw może przekraczać 700 mm²/s);

wykazywać wysoką niezawodność, trwałość i gotowość (okresy między- naprawcze elementów konstrukcyjnych silników osiągają kilka do kilku-dziesięciu tysięcy godzin, zaś jednocześnie czas przeprowadzenia głównych obsług, jak np. wymiana tłoka, skrócił się do kilku / kilkunastu godzin).

Dla oceny jakości działania silnika oraz ewentualnej lokalizacji zakłóceń (uszkodzeń), pośród wielu narzędzi istotna jest analiza przebiegu dwóch podstawowych procesów roboczych silnika, a mianowicie procesu wtrysku i procesu spalania. Nowoczesne systemy indykujące umożliwiają rejestrację i analizę przebiegu wtrysku i ciśnienia spalania w poszczególnych układach cylindrowych. Indykowanie wykorzystywane jest do określenia mocy rozwijanej przez silnik w komorach spalania, oceny bieżącego stanu technicznego silnika, lokalizacji zakłóceń w pracy silnika oraz przeprowadzania prac regulacyjnych na silniku, np. po wykonanym remoncie.

Pełna ocena stanu technicznego silnika jest możliwa poprzez wykorzystanie analizy procesu wtrysku i spalania wraz z innymi narzędziami diagnostycznymi, ujmującymi m.in.:
• pomiary i analizę parametrów układu wymiany ładunku;
• ocenę właściwości fizyko-chemicznych i analizę składu mediów roboczych, (oleje, paliwa, woda chłodząca);
• pomiary parametrów mediów roboczych w silniku (temperatury, ciśnienia, przepływy);
• pomiar stężenia mgły olejowej w skrzyni korbowej;
• wykorzystanie analizatorów obciążenia mechanicznego i cieplnego elementów silnika;
• analizę chwilowych zmian prędkości obrotowej silnika;
• wykorzystanie systemów do diagnozowania pierścieni tłokowych;
• analizę pól termicznych elementów silnika;
• wykorzystanie układów diagnostyki akustyczno-organiowej.

Dotychczas zagadnienia indykowania silników spalinowych przedstawiane były w pracach wielu autorów, w tym również opublikowanych w języku polskim [31, 45, 48, 64, 87, 90]. Zagadnienie indykowania silników jest wieloaspektowe, a więc wymienione prace poruszają zagadnienia konstrukcji systemów do indykowania [8, 60], błędów pomiarowych [7, 58], korelacji pomiaru ciśnienia z położeniem tłoka lub wału korbowego [32, 39, 54, 59–60, 82], czy wykorzystania zmodyfikowanych metod diagnostycznych [59, 71–72] itp.

Niniejsza monografia w zamierzeniu autora ma stanowić uzupełnienie bogatej literatury tematu, dostarczając Czytelnikowi podstawowych informacji na temat diagnozowania wybranych zakłóceń (uszkodzeń) silnika opartego na pomiarach ciśnienia spalania i wtrysku. Opracowanie nie przedstawia opisu metod indykowania, szczegółowej prezentacji metod przeprowadzania pomiarów oraz opisu dostępnego sprzętu do indykowania. Wszystkie te kwestie doskonale opisują wymienione wcześniej publikacje literaturowe. Monografia ma formę przewodnika prezentującego podstawowe elementy wnioskowania na temat stanu technicznego silników okrętowych oraz lokalizacji niezdatności ich elementów funkcjonalnych i jest skierowana głównie do mechaników okrętowych. Wymienione kwestie zostały w niniejszej pracy odniesione do opisu zjawisk zachodzących w silniku spalinowym. Dotychczasowe prace innych autorów stosunkowo mało miejsca poświęcały analizie korelacji pomiędzy zjawiskami zachodzącymi w silniku a zmianami w zarejestrowanych przebiegach ciśnienia spalania i wtrysku, w związku z niewykorzystaniem uwzględnieniem zmienności tych procesów pod wpływem degradacji elementów silnika w trakcie eksploatacji oraz ich zależności od korekty działania (regulacji) elementów wykonywanych przez eksploatatora podczas przeglądów [44].

Struktura pracy oraz forma prezentacji informacji została przygotowana pod kątem oczekiwań eksploitatatorów siłowni okrętowych. Monografia jest skierowana głównie do mechaników okrętowych i diagnostów silników dużej mocy oraz do studentów kierunków mechanika i budowa maszyn oraz mechatronika. Zakres tematyczny pracy obejmuje wprowadzenie w podstawowe zagadnienia związane z indykowaniem silnika, podstawowe procesy zachodzące w silniku spalinowym, odniesienie parametrów diagnostycznych silnika do warunków referencyjnych oraz diagnozowanie zakłóceń w pracy silnika.

Wymieniony ostatni rozdział, stanowiący kluczowy element niniejszej pracy, został podzielony na podrozdziały opisujące zakłócenia najczęściej występujące podczas pracy silnika. Kolejno przedstawiono: nieprawidłowości wyregulowania dawki paliwa, nieprawidłowości wyregulowania początku wtrysku paliwa,
nieprawidłowości w rozpyleniu paliwa, przecieki w instalacji wtryskowej oraz zużycie elementów komory spalania.

Autor wyraża przekonanie, iż niniejsze opracowanie usprawni pracę eksploatorów, jako przydatny przewodnik diagnostyczny, a także umożliwi lepsze zrozumienie procesów zachodzących w silnikach spalinowych przez studentów kierunków mechanicznych uczelni wyższych.
DIAGNOZOWANIE SILNIKÓW OKRĘTOWYCH Z ZAPŁONEM SAMOCZYNNYM W OPARCIU O ANALIZĘ PROCESÓW WTRYSKU I SPALANIA PALIWA

STRESZCZENIE

Monografia stanowi przewodnik w zakresie analizy wykresów indykatorowych i jest skierowana do eksploaterów silników okrętowych, diagnostów maszyn i urządzeń okrętowych oraz studentów kierunków mechanicznych uczelni wyższych.

W pracy przedstawiono syntezę zagadnień dotyczących oceny stanu technicznego okrętowego silnika wielkiej mocy, opartej na analizie zmian ciśnienia spalania i ciśnienia wtrysku paliwa.

Dokonano wprowadzenia w podstawowe zagadnienia związane z indykowaniem silnika, w tym omówiono zasadnicze procesy zachodzące w silniku spalinowym. Opis poszczególnych zagadnień poparto materiałem graficznym.

Kolejno przedstawiono odniesienie zarejestrowanych parametrów diagnostycznych silnika do warunków referencyjnych, poprzez przeliczenie ich na wartości odpowiadające warunkom standardowym. Wzięto pod uwagę korekty wartości temperatury i ciśnienia, ze względu na zmianę ciśnienia otoczenia oraz temperaturę wody zaburtowej i temperaturę powietrza w silowni okrętowej.

W rozdziale czwartym przedstawiono analizę wykresów wartości ciśnienia spalania i ciśnienia wtrysku paliwa pod kątem diagnozowania zakłóceń w pracy silnika. Kolejno omówiono: nieprawidłowości wyregulowania dawki paliwa, nieprawidłowości wyregulowania początku wtrysku paliwa, nieprawidłowości w rozpyleniu paliwa, przecioki w instalacji wtryskowej oraz zużycie elementów komory spalania. Dla każdego przypadku przedstawiono opis wpływu zakłóceń na zmiany parametrów wtrysku i spalania, co poparto wykresem i tabelami z zestawieniem zmian charakterystycznych parametrów diagnostycznych, które to zmiany stanowią symptomy opisujące określone zakłócenie.

Prezentację uzupełniono symulacjami zmian wykresów wartości ciśnienia spalania i ciśnienia wtrysku paliwa, przeprowadzonymi na symulatorze silowni okrętowej Kongsberg Neptune z silnikiem MAN B&W 5MC90. Wykresy odpowiadają różnym zadannym wartościom obciążenia silnika oraz stanom pracy silnika z zasyfunkowanymi zakłóceniami o różnej intensywności oddziaływania.

Pracę zamknięto podsumowaniem wraz z nakreśleniem wybranych kierunków dalszych badań w przedmiotowej tematyce.
ABSTRACT

A monograph is a guide to the analysis of indicator charts and it is aimed at the operators of marine engine rooms, inspectors of marine machinery and equipment, and students at the mechanical faculties of universities and colleges of higher education.

This paper has summarized a synthesis of the topics concerning the assessment of the technical condition of a ship’s high-power engine, based on the analysis of the changes in the combustion pressure and the fuel injection pressure.

An introduction to the basic aspects of engine indication, including the basic processes taking place in a combustion engine, has been presented. The description of the particular aspects has been supported by visual aids.

The diagnostic parameters of the engine were recorded and correlated to the reference conditions by transforming them into values corresponding to the standard conditions. Adjustments of the temperature and pressure values, due to the changes in the ambient pressure, as well as the overboard water temperature and the air temperature in the engine room, were taken into account.

The analysis of the graphs of the combustion pressure and the fuel injection pressure for the diagnosis of engine malfunctions has been presented in chapter 4. The following items have been discussed: irregularities in the regulation of the fuel dose, irregularities in the fuel injection begin, irregularities in the fuel atomization, leakage in the injection system and wear of the combustion chamber components. For each case, a description of the effect of the interference on the changes in the injection and combustion parameters has been presented, backed up by graphs and tables with a summary of the changes in the characteristic diagnostic parameters, which are symptoms that describe the specific interference.

The presentation has been supplemented by simulations of the changes in the graphs of the combustion pressure and the fuel injection pressure, carried out using a simulator of the Kongsberg Neptune engine room with a MAN B&W 5MC90 engine. The diagrams correspond to the different engine load values and engine operating states with simulated malfunctions of different intensities.

This paper has been concluded with a summary of the outline of selected directions for further research on the subject matter.
Dr hab. inż. Leszek Chybowski jest zatrudniony na stanowisku profesora w Akademii Morskiej w Szczecinie. Posiada wieloletnie doświadczenie w pracy na morzu jako oficer mechanik okrętowy. Zajmuje się badaniami z zakresu niezawodności, bezpieczeństwa i oceny stanu technicznego maszyn i urządzeń. Jest autorem lub współautorem ponad 160 publikacji naukowych i popularno-naukowych, w tym czterech monografii. Prowadzi zajęcia dydaktyczne z przedmiotów związanych z eksploatacją okrętowych silników spalinowych i ich mechanizmów pomocniczych.

Praca poświęcona jest analizie wykresów indyktorowych silnika okrętowego wolnoobrotowego wielkiej mocy uzyskanych dla symulowanych różnych zmian stanu technicznego, głównie procesów wtrysku i spalania paliwa, na podstawie których można przeprowadzać proces diagnozowania. […] przedstawiona mi do oceny monografia stanowi ważną publikację z zakresu diagnozowania uszkodzeń mechanicznych silników okrętowych, może być wykorzystywana w dydaktyce i w pełni zasługuje na jej opublikowanie.

prof. dr hab. inż. Adam Charchalis
Uniwersytet Morski w Gdyni

Praca […] może być przydatną instrukcją do ćwiczenia laboratoryjnego w zakresie symulacji komputerowej stanów technicznych silnika morskiego o zapłonie samoczynnym. I jako taka może być opublikowana jako przewodnik dla mechaników okrętowych.

prof. dr hab. inż. Andrzej Piętak
Uniwersytet Warmińsko-Mazurski w Olsztynie