Probabilistic Analysis of Marine Binary Technical Systems
Represented by Boolean Models

Key words: logical model, logical operators, fault tree analysis, Boolean rules

Basic relations useful in the reduction of Boolean models of technical systems have been presented. Elementary logical gates used in a coherent fault tree and their probabilistic evaluations have been pointed out. A marine system (sea water cooling system) has been analyzed with the use of the presented methodology.

Analiza probabilistyczna morskich dwustanowych systemów technicznych reprezentowanych modelami boolowskimi

Słowa kluczowe: model logiczny, operatory logiczne, analiza drzewa niezdatności, zasady logiki Boole'a

Przedstawiono podstawowe zależności przydatne przy redukcji boolowskich modeli systemów technicznych. Wyszczególniono podstawowe operatory logiczne wykorzystywane w koherentnych drzewach niezdatności i ich analizie probabilistycznej. Przykładowy system okrętowy (system chłodzenia wody morskiej) został przeanalizowany z użyciem przedstawionej metodologii.
Introduction

For a binary model of the system in the form of a fault tree, usually the first step in the dependability analysis is to identify in minimal cut sets of the analysed system. The process of searching for minimal cut sets and path sets is based on the application of Boolean algebra rules to the binary equation which represents a given fault tree model [1, 3, 4].

The identification of minimal cut sets for a given fault tree requires:
1. Conversion of fault tree to equivalent in the form of Boolean formulas set (logical model).
2. Determination of the top event with the use of Boolean algebra by tracing of tree from bottom to top or from top to bottom.

1. Reduction of logical models

Let E_1, E_2 and E_3 represent any logical events, \emptyset – an empty set, Ω – a full set, and set E' is a complementation of set E. Basic rules of Boolean algebra for these symbols are presented below. These rules are used for the reduction and transformation of Boolean equations, which represent the fault tree model. The most important formulas for fault tree evaluations are:

Commutative Law:

\[
E_1 \cap E_2 = E_2 \cap E_1
\]
\[
E_1 \cup E_2 = E_2 \cup E_1
\]

Associative Law:

\[
E_1 \cap (E_2 \cap E_3) = (E_1 \cap E_2) \cap E_3
\]
\[
E_1 \cup (E_2 \cup E_3) = (E_1 \cup E_2) \cup E_3
\]

Idempotent Law:

\[
E_1 \cap E_1 = E_1
\]
\[
E_1 \cup E_1 = E_1
\]

Law of Absorption:

\[
E_1 \cap (E_1 \cup E_2) = E_1
\]
\[
E_1 \cup (E_1 \cap E_2) = E_1
\]
Probabilistic Analysis of Marine Binary Technical Systems ...

Distributive Law:
\[E_1 \cap (E_2 \cup E_3) = (E_1 \cap E_2) \cup (E_1 \cap E_3) \quad (9) \]
\[E_1 \cup (E_2 \cap E_3) = (E_1 \cup E_2) \cap (E_1 \cup E_3) \quad (10) \]

Complementation:
\[E_i \cap E_i' = \emptyset \quad (11) \]
\[E_i \cup E_i' = \Omega \quad (12) \]

De Morgan’s Theorem:
\[(E_1 \cap E_2)' = E_1' \cup E_2' \quad (13) \]
\[(E_1 \cup E_2)' = E_1' \cap E_2' \quad (14) \]

Other relations:
\[E_1 \cup (E_1' \cap E_2) = E_1 \cup E_2 \quad (15) \]
\[E_1' \cap (E_1 \cup E_2') = E_1' \cap E_2' \quad (16) \]

2. Logical operators

In the classical fault tree analysis basic kinds of logical gates are used, i.e. union and intersection operators. The structure modelled by means of these operators is always a coherent tree. If for the building of a fault tree also the negation operator is used (or complex gates with internal negation), then the tree may, but does not have to be an incoherent fault tree. These kinds of systems are very rare and will not be analysed in this paper.

The gate OR represents the union of input events. If input events are denoted as \(E_1, E_2, \ldots E_n \), and the gate output as ZP, the logical representation of OR gate operation is given as:

\[ZP = \text{or}(E_1, E_2, \ldots E_n) = E_1 \cup E_2 \cup \ldots \cup E_n = \bigcup_{i=1}^{n} E_i \quad (17) \]

An output event is generated from OR gate when there does exist at least one input event. The probability of the output event generation \(P(ZP) \) from OR gate with two input events \(E_1 \) and \(E_2 \) with the probabilities of occurrence, respectively, \(P(E_1) \) and \(P(E_2) \), according to probabilistic rules is as follows:
According to the sets theory rules:

- if events E_1 and E_2 are mutually exclusive, which means $P(E_1 \cap E_2) = 0$, then:

$$P(ZP) = P(E_1) + P(E_2)$$

(19)

- if input events E_1 and E_2 are independent, which means $P(E_2|E_1) = P(E_2)$, then:

$$P(ZP) = P(E_1) + P(E_2) - P(E_1)P(E_2)$$

(20)

- if event E_2 is completely dependent on event E_1, which means $P(E_2|E_1) = 1$, then:

$$P(ZP) = P(E_2)$$

(21)

For all cases, if occurrence of two input events in the same time is neglected, the probability can be estimated according to this formula:

$$P(ZP) \geq P(E_1) + P(E_2) \geq P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

(22)

For low probabilities of input events (less than 0.1) and for independent input events, the probability of output generation $P(ZP)$ can be estimated with the relative error less than 0.1 with the use of the rare event approximation:

$$P(ZP) \simeq P(E_1) + P(E_2)$$

(23)

For OR gate with n independent input events, the probability of the output event generation is given by Poincare equation:

$$P(ZP) = P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i) - \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P(E_i)P(E_j) + \sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n} P(E_i)P(E_j)P(E_k) + \cdots + (-1)^{n-1} P(E_1)P(E_2)\cdots P(E_n)$$

(24)
If the occurrence of two or more input events in the same time is neglected, this equation will be reduced to the rare event approximation form:

\[P(ZP) = P\left(\bigcup_{i=1}^{n} E_i \right) = \sum_{i=1}^{n} P(E_i) \] \hspace{1cm} (25)

For completely independent events formula (26) is useful. In practice this equation is used for systems with partly dependent (associated) input events:

\[P(ZP) = P\left(\bigcup_{i=1}^{n} E_i \right) = 1 - \prod_{i=1}^{n} [1 - P(E_i)] = \prod_{i=1}^{n} P(E_i) \] \hspace{1cm} (26)

The gate \textit{AND} represents an intersection of input events. If input events are denoted as \(E_1, E_2, \ldots, E_n \), and the gate output as \(ZP \), the logical representation of the \textit{AND} gate operation has this form:

\[ZP = \text{and}(E_1, E_2, \ldots, E_n) = E_1 \cap E_2 \cap \ldots \cap E_n = \bigcap_{i=1}^{n} E_i \] \hspace{1cm} (27)

An output event is generated from the \textit{AND} gate when there do exist all of the input events. The probability of output event generation \(P(ZP) \) from the \textit{AND} gate with two input events \(E_1 \) and \(E_2 \) with the probabilities \(P(E_1) \) and \(P(E_2) \), respectively, according to the probabilistic rules is expressed as:

\[P(ZP) = P(E_1) \cdot P(E_2 | E_1) = P(E_2) \cdot P(E_1 | E_2) \] \hspace{1cm} (28)

According to the relevant sets theory rules:

- if input events \(E_1 \) and \(E_2 \) are independent, \(P(E_2 | E_1) = P(E_2) \) and \(P(E_1 | E_2) = P(E_1) \), then:

\[P(ZP) = P(E_1) \cdot P(E_2) \] \hspace{1cm} (29)

- if input events \(E_1 \) and \(E_2 \) are not independent and \(P(E_1) > P(E_2) \), then:

\[P(E_1) \geq P(ZP) > P(E_1) \cdot P(E_2) \] \hspace{1cm} (30)

- if event \(E_2 \) is completely dependent on event \(E_1 \), which means \(P(E_2 | E_1) = 1 \), then:

\[P(ZP) = P(E_1) \] \hspace{1cm} (31)
For the \textit{AND} gate with \(n \) independent input events, the probability of output event generation has this form:

\[
P(ZP) = P\left(\bigcap_{i=1}^{n} E_i\right) = \prod_{i=1}^{n} P(E_i)
\]

(32)

The voting gate represents the logical operation which generates an output event when there exists at least \(k \) out of all \(n \) inputs to the gate. This operation is also called \(K\)-out-of-\(N \) gate. This gate can be represented in the form of \textit{AND} and \textit{OR} gates combination with artificially entered intermediate events [2].

The voting gate is logically a union of all possible \(k \)-elements intersections of input events \(E_j \) to \(E_n \). The number of all combinations is:

\[
C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

(33)

The probability of output event generation \(P(ZP) \) through the voting gate with parameters \((k, n)\) and input events \(E_1, E_2, \ldots E_n \) is given by this formula:

\[
P(ZS) = \sum_{m=k}^{n} \left\{ (-1)^{m-k} \binom{m-1}{k-1} \sum_{i=1}^{m} \prod_{j=1}^{i} \left[P(E_{i_j}) \right] \right\}
\]

(34)

3. Case study

The presented methodology is applicable for time dependent and constant probability models. A case study for selected marine power plant systems installed onboard offshore multi support vessel is shown below. One of these systems: main power plant engines sea water cooling system is presented in Fig. 1.

The description of all components and respective events for the binary model (fault tree) is shown in Table 1. The fault tree is presented in Figure 2. Table 1 also defines the events in the binary model. The analysis was carried out on the basis of the constructed trees taking the calculated failure measures as input data, (moments of failures taken from the real system).

The analysis was done by means of \textit{CARA-FaultTree} computer code from \textit{Sydvest Software}. The calculations basically aimed at the estimation of the unavailability of a selected marine power plant system.
Probabilistic Analysis of Marine Binary Technical Systems ...

Fig. 1. Diagram of the analyzed sea water cooling system

Rys. 1. Schemat analizowanego systemu chłodzenia wodą morską

Table 1

Description of system components and analyzed events in the system

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Component name</th>
<th>Type</th>
<th>Event description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL1P</td>
<td>Bottom sea chest valve no 1</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [-]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VL1S</td>
<td>Bottom sea chest valve no 1 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [-]</td>
<td>3.0000e–005</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>VL2P</td>
<td>Bottom sea chest valve no 2 Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VL2S</td>
<td>Bottom sea chest valve no 2 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VHP</td>
<td>High sea chest valve Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VHS</td>
<td>High sea chest valve Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VOP</td>
<td>Outlet valve Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VOS</td>
<td>Outlet valve Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VS1P</td>
<td>Suction valve of pump no 1 Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VS1S</td>
<td>Suction valve of pump no 1 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VS2P</td>
<td>Suction valve of pump no 2 Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VS2S</td>
<td>Suction valve of pump no 2 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VD1P</td>
<td>Delivery valve of pump no 1 Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VD1S</td>
<td>Delivery valve of pump no 1 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VD2P</td>
<td>Delivery valve of pump no 2 Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VD2S</td>
<td>Delivery valve of pump no 2 Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VC1P</td>
<td>Cooler inlet valve Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VC1S</td>
<td>Cooler inlet valve Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VC2P</td>
<td>Cooler outlet valve Port</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>VC2S</td>
<td>Cooler outlet valve Stbd</td>
<td>On demand</td>
<td>Valve failed in closed position</td>
<td>q [–]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>P1P</td>
<td>Sea water pump no 1 Port (active pump)</td>
<td>Non repairable</td>
<td>Failure during starting/running</td>
<td>q [failure/h]</td>
<td>3.0000e–005</td>
</tr>
<tr>
<td>P1S</td>
<td>Sea water pump no 1 Stbd (active pump)</td>
<td>Non repairable</td>
<td>Failure during starting/running</td>
<td>q [failure/h]</td>
<td>3.0000e–005</td>
</tr>
</tbody>
</table>
Besides, analyses were performed with exact ERAC calculation for a time dependent event model (exponential distribution). The operation of the engine room is according to the third DP class. This means that crossover valves...
between the engine rooms are closed, while the main electric buses are divided. Some failures at the beginning of the observation have been simulated, e.g. one strainer was clogged (F1P), two strainers were clogged – one in each engine room (F1P, F1S), one sea chest was out of operation (VL1P, VL2P). The results of the analysis of 4300 hours simulation are shown in Table 2 and Fig. 3 and 4.

| Components that failed at the start of observation |
|---|---|---|---|
| t | none | F1P | F1P, F1S |
| 0 | 1.80E-04 | 5.70E-04 | 9.60E-04 |
| 450 | 1.45E-01 | 3.27E-01 | 4.69E-01 |
| 900 | 3.97E-01 | 5.91E-01 | 7.21E-01 |
| 1350 | 6.16E-01 | 7.66E-01 | 8.54E-01 |
| 1800 | 7.70E-01 | 8.70E-01 | 9.24E-01 |
| 2250 | 8.68E-01 | 9.30E-01 | 9.61E-01 |
| 2700 | 9.26E-01 | 9.62E-01 | 9.80E-01 |
| 3150 | 9.59E-01 | 9.80E-01 | 9.89E-01 |
| 3600 | 9.78E-01 | 9.89E-01 | 9.95E-01 |
| 4050 | 9.88E-01 | 9.94E-01 | 9.97E-01 |
| 4500 | 9.94E-01 | 9.97E-01 | 9.99E-01 |

The presented characteristics show that with the higher number of failed components in the system, the unavailability function values are also higher.

Final conclusions

The presented methodology is applicable to coherent fault trees with binary logical operators. The operation of presented gates is independent of time. The static fault trees use these operators in combination with primary events represented by the constant probability of event occurrence.

If events or gates are time dependent, the built fault tree is called a dynamic fault tree. The group of time dependent logical operators i.e. spare gates (hot, warm, cold), priority AND gate, functional dependency gate etc. are not presented here.
The application of time-dependent models offers a fuller description of the system behaviour during its operation than a classical model, which has been shown in Fig. 3 and 4. These have been prepared on the basis of previously presented values of reliability characteristics and the given fault tree model.
The presented method gives a convenient analysis of system dependability (e.g. unavailability) characteristics of the system at selected suitable values measures of the characterised events (faults in the technical system).

The classical binary model is very fast in computing, so it is often used in a preliminary reliability analysis.

References

Recenzent
prof. dr hab. inż. Mieczysław Hann

Adresy Autorów
mgr inż. Leszek Chybowski
dr hab. inż. Zbigniew Matuszak, prof. AM
Akademia Morska w Szczecinie
ul. Wały Chrobrego 1-2, 70-500 Szczecin